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Steady state hydrodynamics of a lattice Boltzmann immiscible lattice gas

I. Halliday' and C. M. Care?
! Division of Applied Physics, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, United Kingdom
2Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, United Kingdom
(Received 17 April 1995; revised manuscript received 24 July 1995)

We report results from a simulation that assesses steady state hydrodynamics of two-phase lattice gas
fluids by considering isolated fluid drops that are suspended in an immiscible fluid of identical viscosity.
Gunstensen’s method of incorporating phase segregation between different species of colored densities
[(A.K. Gunstensen et al., Phys. Rev. A 43, 4320 (1991)] is combined with Kingdon’s recent nonlinear,
nonlocal lattice Boltzmann equation [R. Kingdon, J. Phys. A 25, 3559 (1992)], which facilitates meaning-
ful observations of lattice gas interfacial hydrodynamics. After the approach to a steady flow state has
been assessed, the deformation of a suspended fluid drop, its angle of orientation to the shear flow, and
the relationship between these quantities are extracted from simulations over a range of shear rates and
interfacial tensions. Qualitative and quantitative comparison of these results with hydrodynamic theory
shows further work to be necessary but worthwhile. Gunstensen’s automaton phase segregation rule is
also found to be responsible for inducing steady microscopic currents or microcurrents close to the infer-
face in a static flow. The influences of these microcurrents are briefly considered after Gunstensen
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I. INTRODUCTION

The lattice gas cellular automaton (LGCA) originally
proposed by Frisch et al. in 1987 [1] is a lattice popu-
lated by monoenergetic particles propagating and under-
going momentum and number conserving collisions. Cer-
tain quantities extracted from simulations of this system,
on a macroscopic scale, are close to bulk features of in-
compressible fluid flows and are, ipso facto, equivalent to
solutions of the Navier-Stokes equation.

Additional degrees of freedom introduce into LGCA’s
interfaces between immiscible lattice fluids. Immiscible
lattice gas automata (ILG’s) first appeared in 1988 [2].
Rothman and Keller’s ILG contains two species of parti-
cles, distinguished by their color. Rules for segregating
species in collisions are all that is necessary to enrich the
behavior of the LGCA to the extent that spontaneous
phase separation arises. Previous work (Sec. II) demon-
strates that ILG’s behave, insofar as simulations of rest
fluids are concerned, in a manner which admits of the as-
sociation of a surface tension with the interface between
separated colors. But whilst ILG’s and their lattice
Boltzmann equation (LBE) counterparts have been ap-
plied to the simulation of multiphase flows, some of
which are quite complex [3], a fundamental question re-
lating to the interfacial hydrodynamics remains open,
possibly due to difficulties attending the attribution of ve-
locities to particular phases in the interfacial region. For
as is well known Gallilean-invariant hydrodynamic veloc-
ities derive from LGCA’s only after rescaling lattice
quantities and rescaling is obstructed by the presence of
curved interfaces only one or two sites across (see Sec.
1D).

Occupying as they do a niche between molecular and
traditional continuum hydrodynamics, ILG’s are poten-
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tially useful. To be of any value as alternatives to CFD in
multiphase complex flow applications, however, this as-
pect of ILG interfacial boundary behavior needs to be
researched.

In [4] Kingdon reports a LBE algorithm which, whilst
it models the usual collision process, takes into account
isotropy and Gallilean invariance directly, requiring no
rescaling to map lattice quantities onto solutions of the
Navier-Stokes equation. A lattice Boltzmann ILG
(LBILG) implementation based on the algorithm of [4]
and the work of Gunstensen et al. in [3] will therefore
address the problem of interface location by circumvent-
ing the necessity to rescale lattice quantities and hence fa-
cilitate evaluation of the model’s steady state interfacial
hydrodynamics—Sec. III.

To study steady state dynamic interfacial properties we
therefore use a combination of the algorithms of Kingdon
and Gunstensen et al. applied to the case of a small red
fluid droplet suspended in a blue phase, to which different
shear rates and interfacial tensions are applied in the
manner considered in Secs. IV and V. The simulation’s
resulting steady state drop deformation behavior is
presented in Sec. VI and discussed in Sec. VII, where
semiquantitative comparisons with theory suggest further
work is necessary.

ILG fluids, like real fluid media, are separated by tran-
sitional layers. For the latter, in the continuum regime,
interface structure is unimportant. This cannot be said of
ILG fluid interfaces, and, whilst here drop response to
applied shears is the principal issue, we also report briefly
upon measurements after Gunstensen [5], on steady mi-
crocurrents, induced at the interface by the segregation of
colored species, for we shall argue in Secs. VII and VIII
that their presence may have some bearing upon the
capacity of a LBILG interface to recover ‘“‘real world”
hydrodynamic behavior.

1602 ©1996 The American Physical Society
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II. CELLULAR AUTOMATON IMMISCIBLE
LATTICE GAS HYDRODYNAMICS
AND ITS LIMITATIONS

Rothman and Keller [2] augmented the original LGCA
of Frisch et al. [1], populating it with particles of two
colored species which inhabit the links c;, of a regular
hexagonal lattice. Boolean quantities r;(x,7) [b;(x,1)]
denote the number of red [blue] particles on the jth link
beginning at position x and time step z. This diagram
shows the link indexing convention used throughout the
present report relative to the usual Cartesian axes.
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Node collisions now conserve individual color popula-
tions and, centrally, of all possible momentum conserving

outputs from collisions between mixed species, the one
selected maximizes the work done by site color flux

q(x,t)= 3 [ri(x,6)—b;(x,1)]c;

i

y

s T

5

(2.1)
against a nonlocal approximation to the gradient in color
difference, the color field,

f(x,0)= 3 [rj(x+c;,t)=b;(x+c;,t)]c; .
ij

(2.2)

These additional rules bias postcollision particle distribu-
tion at sites of mixed color population, producing an ac-
cumulation of particles on lattice links perpendicular to
an interface between red and blue lattice regions and a
corresponding diminution on links parallel to that inter-
face. Consequently the local ensemble average pressure
tensor

Py =3 {ni(x,0))cieci »
i

(2.3)
ni(x,t)=r(x,t)+b;(x,1) ,

becomes anisotropic and the two colored species spon-
taneously separate.

Such models of hydrodynamics unfortunately contain
high levels of statistical noise. Whilst there is a growing
realization that fluctuations are actually useful in adapt-
ing lattice gas techniques to the simulation of colloidal
systems, large scale (parallel) ILG simulations after [2]
have attributes (invisible on the time and spatial scales of
the original simulation of Rothman and Keller) which re-
strict their practically for present purposes, namely, per-
sistent oscillations in both shape and interior pressure [6].
Moreover, small scale circulations or microcurrents ([5],
see Fig. 5, below) induced close to the interface are ob-
served and clearly of interest. These, we argue in Sec.
VII, are to be expected as a consequence of the particular
means of color separation used by the Rothman-Keller
(RK) rule and, like drop shape information, quantitative
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observation of microcurrent activity is hindered by the
inherent noise. The significance of these considerations
is, however, overshadowed by a more important limita-
tion on the CA based ILG’s, associated with rescaling.

Hydrodynamic velocity fields are recovered from the
automaton only after the instantaneous node quantities
3.n;(x,t) and 3;n;(x,t)c; have first been ensemble aver- .
aged and then rescaled [1]. Denoting the ensemble aver-
age value of n;(x,¢) by N;(x,¢) (the link density) the lat-
tice fluid site density and velocity are given by

p(x,8)= 3 N;(x,t), (2.4a)
_ 1
v(x,t) = (%, 1) ;N,-(x,t)c,- . (2.4b)

Subsequent rescaling (Ref. [1], section 7.2 onwards) maps
quantities (2.4), respectively, onto incompressible hydro-
dynamic pressure and velocity. Rescaling involves spa-
tial and temporal averaging over sublattices and consecu-
tive time steps [1] and this clearly introduces ambiguities
when applied near interfaces only a few sites thick. For,
with small drops, interfacial curvature may be significant
over the rescaling region, so difficulties arise in assigning
velocities to particular automaton fluid phases. Such
difficulties in defining meaningful interfacial velocity
fields in the ILG automaton clearly present a problem,
because target ‘“real world” hydrodynamic interfacial
boundary conditions concern continuity of stress contrac-
tions and velocity components (e.g., [7]), and these relate
directly to the interfacial velocity field.

III. LATTICE BOLTZMANN IMMISCIBLE
LATTICE GAS HYDRODYNAMICS

In this section we consider the established methods al-
ready in the literature which are combined to advantage
in the present work, deferring until the next section the
actual details of our simulations.

A LBILG approach to lattice gas hydrodynamics con-
tains ensemble averaging, although not necessarily the re-
scaling of the automaton, and so overcomes the limita-
tion of noise explicitly [1,8,9,6]. In place of the direct
simulations of the CA a two-dimensional LBE uses a
plain hexagonal lattice, whose links are populated not by
particles but by the corresponding (continuous) densities
N;(x,t). Analysis of the automaton algorithm shows [1,9]
that, if at discrete times these densities are propagated
and collided by adjusting them in a manner designed to
be consistent with the number conserving automaton par-
ticle collisions, their values continue to represent ensem-
ble average values of n;(x,¢). Unfortunately the methods
for colliding densities do not appear to have been com-
pared or detailed consistently in the literature. Ap-
proaches based upon a linearized collision matrix (e.g.,
[9]), nonlinear analysis of automaton collisions [3], and
nonlocal approaches [4] have been used.

Of the methods cited (i.e., [1,3,8]) the most recent and
most clearly documented (two-dimensional) version is
Kingdon’s [4]. Whilst nonlocal (it utilizes velocity gra-
dients in updating the densities) Kingdon’s method in-
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corporates Galilean invariance directly and explicitly re-
covers the mapping of quantities similar to (2.4) onto the
incompressible Navier-Stokes equation without rescaling.
An additional advantage of Kingdon’s algorithm is that it
allows parametrization of the simulated fluid shear
viscosity. However, relying as it does on velocity gra-
dients which must be calculated with reference to infor-
mation from adjacent sites, Kingdon’s scheme proves to
be computationally inefficient compared with other local
lattice Boltzmann schemes [10].

Interfaces are actually introduced into LBILG’s by the
use of colored densities. Red and blue densities, the aver-
age probabilities of finding a red or blue particle on link #
at position x and time ¢, are written R;(x,¢) and B;(x,t),
with the overall density given by

N,;(x,8)=R;(x,t)+B;(x,1) . (3.1

In modeling collision processes at a site, the N;(x,?) are
adjusted with no reference to its color composition. It is
clearly necessary to couple the lattice distribution of
color to the distribution of mass, and so a means of allow-
ing these quantities to interact is introduced.

Between the two colored species an interface is main-
tained in the LBILG in this work following a prescrip-
tion first reported by Gunstensen et al. [3], which incorp-
orates phenomenologically into a LBILG the color field
biased, multicolored collisions of Rothman and Keller’s
CA scheme. A LBILG color field is a nonlocal approxi-
mation to the gradient of color difference generalized nat-
urally from the automaton case (2.2):

f(x,2)= 3 [R;(x+¢;,t)=B;(x+c;,t)]c; .
ij

(3.2)

It is essential to incorporate an influence due to the color
field similar to the bias its presence produces in an ILG
automaton. On mixed nodes f(x,?) is used to perturb the
N,(x,t) and Gunstensen et al. use a number and velocity
conserving perturbation selected from a number of possi-
bilities (see Sec. VII):

AN;(x,0)=0f| cos[2(6,—6,)] , (3.3)

where 6; denotes the angular orientation of the ith link
and 6, the continuous angular orientation of the color
field f(x,1).

In summary, then, collision steps are performed using
Kingdon’s scheme [4], modified to contain red and blue
species in a manner similar to that used by Gunstensen
et al. [3]. Collided and perturbed densities are then allo-
cated (conserved) color in such a way as to maximize the
segregation of colored species, as explained in Sec. IV.

Collision updated, perturbed, and recolored densities
are finally propagated along lattice links to the next lat-
tice node, which completes a compound update step.

IV. SIMULATIONS OF STEADY STATE DEFORMED
DROPS USING A LBILG

Details of our particular LBILG simulation are given
here. As it is our aim to assess the steady state hydro-
dynamics of a single suspended drop, utilizing the funda-
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mental work discussed in Sec. III, we consider to be
relevant the postcollision allocation of color, the means
by which flow is forced (boundary conditions), and the
stability of observations.

A. Interfacial perturbation and allocation of color

In our algorithm, for the sake of simplicity, the factor
|f] is omitted from the interfacial perturbation (3.3).
From (2.3) and (3.3), increasing the parameter o will in-
crease local anisotropy in the pressure tensor, which, to-
gether with a color density segregation procedure, pro-
duces an interface between the two species. After adjust-
ing the N;(x,?) to include both the effect of collision pro-
cesses and the effect of an interface, the total red mass on
a mixed site is assigned to densities in such a way as to
optimize the red flux in the direction of the color field
(and implicitly the blue flux in the opposite direction).

Attribution of color to achieve this requires a priority
for red occupancy (1-7) to be associated with every link.
In fact, it is necessary only to classify any given color
field into one of 12 30° intervals in order to obtain this
hierarchy, not 36 as reported previously in [2]. Accord-
ingly, the link given the maximum red mass is that sub-
tending the smallest angle to the color field direction. All
red mass on a mixed site is assigned in this way, to links
in descending priority until exhausted. Remaining capa-
city on links at the mixed site in question is thereafter
designated blue. By this process we obtain that postcol-
lision state which minimizes the local work
W(x,t)=—f(x,t)-q(x,t) done by the color flux [generali-
zation of (2.1)] against the color field.

It is appropriate to emphasize here that the sequence
of collision, perturbation, and finally propagation should
be preserved. For if a collision step is performed immedi-
ately after some perturbation, that collision will alter the
densities, overwhelming the effect of the preceding per-
turbation. This is particularly true of the method used to
induce flow, since the LBILG used here with periodic
boundaries applies perturbations to link densities at the
edges of the lattice in order to generate the desired flow
conditions. Note also that anisotropy in the pressure ten-
sor is also the cause of interfacial microcurrents and both
these effects are influenced through (3.3) by the value of
the parameter o, as first observed by Gunstensen in [5].

B. Forcing flow

In the simulations an approximate hydrodynamic shear
field was obtained by imparting uniform velocity in the
positive (negative) x direction at all points in a line at the
bottom (top) of the simulated blue fluid. An appropriate
forcing effect is accomplished in the LBILG by exploiting
periodic boundary conditions and perturbing link densi-
ties. Because periodic boundary conditions are encoun-
tered, care should be exercised in ensuring that the
correct perturbation is applied to the correct link. Thus,
along a line of sites at the bottom of the lattice, a small
constant increment is applied at every time to Ns(x,t)
and N,(x,t) (for link indexing, refer to the diagram on p.
1601). This perturbation is called a force increment F;
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it acts to force flow at the site of application. Conversely,
on these same sites, densities N(x,¢) and N,(x,¢) are de-
cremented by F; ., the overall site density remaining con-
stant. Periodic boundary conditions were in force all
around, so perturbed densities on links 4 and 5 along the
lattice bottom actually propagate around to the top of the
lattice where they produce the correct forcing effect in
the negative x direction. Because of this exploitation of
periodic boundary conditions it is especially important
that flow forcing perturbation be applied immediately be-
fore the propagation step.

Data were extracted only from closing configurations
and, moreover, only from closing configurations in which
the suspended drop was approximately central on the lat-
tice, thus ensuring a symmetric exposure to the applied
flow field. Ipso facto flow forcing perturbations were ap-
plied exclusively at pure blue sites.

The simple measures described above are sufficient to
induce a shear field in a single phase fluid, the size of
which is directly proportional to the size of the force in-
crement used. The presence of a droplet will partially
deflect the flow and the velocity field induced in the mul-
tiphase fluid is not a simple shear in the vicinity of the
drop. However, at a distance from the drop one can ex-
pect an approximate shear flow. This simple observation
provides the principle restriction upon the maximum size
of a drop for a given lattice dimension.

Drops considered in these simulations posed a
sufficiently small “obstruction” on a lattice of given size
to allow for the development of a measurable shear in the
far field of the flow (distant from the center of the drop).
The simulated red drop size was determined by the re-
quirement that, for all drop deformations encountered,
steady state far field shear rates could be accurately
recorded. The precise way in which shear rate y was ac-
tually quantified is considered along with system size in
more detail in Sec. V A.

C. Steady state values of simulation observables

The purpose of the work reported here was to assess
hydrodynamics of the ILG in the steady state. Clearly,
simulation responses should be constant when measured
and it is therefore essential that the approach to a steady
state be studied carefully.

Drop deformation, orientation, internal pressure,
suspending blue fluid shear rate 7, and the total instan-
taneous work defined by

Wot)=— 3 f(x,t)-q(x,1) 4.1

were all defined and measured as a function of simulation
time step. Only lattice configurations in which all of
these quantities have settled to within 0.7% of their
steady value were analyzed for drop response, which was
assessed from data derived from its inertia tensor (see
Sec. VC).

Internal pressure, deformation, and ‘“total energy”
defined through (4.1) were all recorded at each time step.
The most flexible drop subject to the largest shear equili-
brates in approximately 8000 time steps. All the data
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presented in Figs. 1-7 below are obtained from analyses
of the final lattice state of flows evolved for 12 000 time
steps. The data presented (for larger systems but smaller
shear rate) were obtained from final lattice states after
10000 time steps.

In order briefly to study scaling with R and o of inter-
facial microcurrents the hexagonal symmetry of the rest
simulation was exploited. Considering only a 60° seg-
ment of the drop centered on the bottom left of the lattice
clearly expands the size of the simulatable system.
Periodic boundary conditions which rotate through 60°
the direction of motion of particles propagating off the
left- (right-) hand edges of the lattice before they reenter
at the bottom (top) facilitate simulations six times larger
than those possible employing the more usual rectangular
boundary conditions. In our case a range of drop radii
up to 18 lattice units on effective lattices of 6X25X25
sites was obtained from actual lattices of only 25X25
sites. Results shown in Figs. 8 and 9 below are, however,
obtained from drops of radius 12 lattice units on larger
lattices of 50 X 50 sites.

V. OBSERVED QUANTITIES
AND PARAMETER RANGE CONSIDERATIONS

Applied shear rate y (controlled by the simulation pa-
rameter F; ) and the interfacial tension 2 (controlled by
the simulation parameter o ) between the lattice fluids are
the most appropriate simulation observables with which
to parametrize the droplet response. Ipso facto, a means
of defining and measuring these quantities should be
defined but this process is bound up with considerations
of system size. Moreover, it is appropriate, before dis-
cussing our selection of parameter range, to note that for
all the simulations reported both fluids had the same
shear viscosity of 0.02 and initial density of 1.4.

A. Macroscopic surface tension

The Laplace law, which relates X, the pressure
difference across an interface Ap, and the principal inter-
facial radii of curvature [7] may, in two dimensions, be
written

P>

Ap=—4
where R is the drop radius. Taking R as the average dis-
tance from the center of mass of the drop to an interfacial
site, Rothman and Keller [2] observed Laplace law
behavior in ILG static droplets. Whilst the present
LBILG is different from others in the literature it should
certainly exhibit this static behavior. Moreover, a cali-
bration of the parameter o against macroscopic interfa-
cial tension 2 is an aid in the sequel. For Kingdon’s algo-
rithm the hydrostatic pressure p is approximately p =p /4
so that the pressure difference across the interface may be
obtained from appropriate differences between overall in-
terior and exterior site densities.

(5.1)

B. Shear rate y

In multiphase simulations, near field flow is not simple
shear. To measure y it is first necessary to consider the
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problems attending its definition in the context of system
size. Essentially, in order to quantify y it is necessary to
consider velocities at a distance from the drop sufficient
for the flow to be regarded as a shear. This in turn makes
it necessary to determine the largest possible measurable
deformed drop which will admit of this approximation on
a given size of lattice.

Clearly, the greatest possible vertical distance away
from a centrally placed red drop is half the lattice width.
An effective y, then, was defined by averaging velocity
gradient dv, /dy at all sites within a narrow horizontal
band of restricted depth, situated at both the top and bot-
tom of the lattice, in what was taken to be the far field of
the flow (see below). The velocity gradients were defined
after [4] in terms of density gradients. In defining the
averaging bands forced sites were excluded and at any
averaging site the ratio of x to y velocity components was
<0.1. A lattice velocity has dimensions of lattice spac-
ing per unit time so the 7 defined in this way as a lattice
velocity gradient has dimensions of reciprocal time which
is inconvenient for comparison with theory.

Obviously a velocity component in the y direction
might be reduced by increasing the parameter o or de-
creasing F; . (to reduce drop deformation) or by reducing
the radius of the undeformed drop. So for given lattice
size a need to define and measure the 7 defined above re-
stricts the range of undeformed drop radius and that of
the parameters o and F;,.. The results of Figs. 1-7 in
Sec. VI apply to a small drop of radius 7 lattice units
which on a 32X 32 lattice, by trial and error, was found
to constrain o and F;,, to lie within the approximate
ranges 0.001 <o <0.01 and 0 < F;,. <0.008.

C. Drop deformation and orientation

Throughout, the lab frame is taken to be coincident
with the shear flow direction and as a simplification we
regard the deformed drop shape as an ellipsoid, which as-
sumption was tested by a grid search optimized fit of the
perimeter to a rotated ellipsoid and found to be satisfac-
tory.

Drop symmetry axes coincide with the principal axes
of the inertia tensor with the smallest principal moment
corresponding to the semimajor axis of the ellipsoid. Fol-
lowing the traditional procedures of simulation physics,
the deformation of the drop was measured using an order
parameter derived from a traceless inertia tensor. The
center of mass of an established, deformed drop was lo-
cated by considering moments about the origin of coordi-
nates. Components I;; =3I m (r28,-j —x;x;) of the inertia
tensor I were calculated [11]. An orthogonal transforma-
tion on [ yields the drop’s principal moments of inertia
from the eigenvalues of the associated secular deter-
minant and the lab frame orientations of the drop
semimajor and semiminor axes were obtained from the
direction cosines of the principal axes of I. The traceless
inertia tensor was evaluated from

I—1tr(Dl,, , (5.2)

I. HALLIDAY AND C. M. CARE 53

where 1,, is the unit two-dimensional matrix. Diagonal

elements of expression (5.2) are given by the order param-

eter
D=

(Ix_I ) >

g (5.3)

1
2
where I, and I, are the principal moments corresponding
to rotation about the ‘“‘semiminor” and ‘‘semimajor”
axes, respectively. The quantity D of course increases as
droplet eccentricity increases and vanishes for a circular
drop.

The angle at which the ellipsoidally deformed drop
orientates itself, relative to the direction of the forced
flow (taken to be the x axis), is parametrized by the angle
subtended at the horizontal by the semimajor axis of the
ellipse. This quantity, which also may be obtained from
the inertia tensor of the drop, is denoted a.

For purposes of quantitative comparison with theory,
using larger simulations, we introduce a second deforma-
tion parameter. a and b representing drop semimajor and
semiminor axis lengths we define after [12],

_a—b
CTa+b

Having identified the accessible range of simulation ob-
servables, care should be exercised in ensuring the stabili-
ty of the final droplet configurations analyzed. This as-
surance can only be obtained from a study of the ap-
proach of the droplet to the deformed steady state.

The results of Figs. 8 and 9 below are used to make
comparison with theory. They derive from drops of ra-
dius 12 on lattices of 50X 50. o=0.001 was selected so
as to limit microcurrent activity (Secs. VI and VII) and,
since Cox [12] considers as small drop deformations for
D-=0.2, a range of flow forcing parameter
0<F;,. <0.001 consistent with this upper limit of D,
was used so as not to preclude comparison with the per-
turbation calculation [12]. Parametrization of the de-
formed drop shape is obstructed by lattice anisotropies at
very small deformations (hence the need for increased
system size) which result from very small shear rates, so
it was necessary, having determined a, b, and a from an
analysis of the inertial tensor (5.2), to grid-search optim-
ize these observables using a least-squares fit to the inter-
face.

Note that our angle a and that of Cox in [12] are
defined with respect to different coordinate axes and so
differ by 7 /2 rad.

(5.4)

D. Parametrization of interfacial microcurrents

We assess here only those aspects of interfacial micro-
currents which impinge upon the behavior of the steady
state dynamical properties of the interface. Microcurrent
data were collected from a static simulation using the sec-
tional periodic boundary discussed above (Sec. IV C). By
normalizing the velocity field to the largest recorded ve-
locity (always similarly located relative to the interface)
and forming the inner product summation
3 .v(x,t)-v(x,t +1) it is possible to compare the velocity
fields of different simulations with identical sizes. The ve-
locity recorded as characteristic of the interfacial micro-
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current was in each case the maximum flow velocity
occurring close to the color boundary. This quantity was
observed always to occur in approximately the same loca-
tion relative to the interface and was measured for a range
of o and R (Figs. 5 and 6 below and Gunstensen [5]).

VI. RESULTS

For the part of the ranges of simulation parameters ac-
cessible (Sec. V B) we present measurements of D [defined
by (5.3)] and a as functions of the blue fluid shear rate y
(which serve for qualitative and semiquantitative compar-
ison with theory), measurements of microcurrent activity
and, for quantitative comparison with theory, the varia-
tion of a with D. [defined by (5.4)]. Whilst by the cri-
teria outlined in Sec. V we give only a subset of our data,
selection has been made purely for clarity of presentation
and the trends in our data are entirely representative.

Figure 1 shows an example of the equilibration of
simulation observables, each normalized to its relative
steady state value, for simulation parameters
(0,Fi,)=1(0.0002,0.0005) used in Figs. 1-7 below.
Internal pressure is omitted from Fig. 1, since, for the ex-
ample considered, it develops in less than 400 time steps
to a steady value which appears constant and thereafter
fluctuates by less than 0.07%. Figure 1 is also representa-
tive of the approach to the steady state exhibited by the
larger systems considered in Figs. 8 and 9 below. Note
that in this figure droplet deformation is measured by the
ratio of the principal moments of the drop inertia tensor,
not by D or D,.

During the approach to the steady state the internal
pressure converges most rapidly. W, and the deforma-
tion D appear to stabilize on a considerably longer time
scale. From (4.1) it is clear that the surface energy W,
must increase with interface length and once the value of
internal pressure (red site density) is constant it follows
from conservation of color that the volume of the drop is
fixed. In all the cases recorded, a initially converges onto
its steady state value more rapidly than both W, and D;

1.6 p—— S—
144 A
o
= 1.2
«
g 1
208
3o
ja=1
0.6
5 C
&% 0.4
0.2
0
(=3 (=3 (=3 (=3 (=3 (=3 (=3 S (=3 (=3 =1 (=3
(=3 =3 (=3 (=1 (=3 (=20 (=3 (=3 (=3 (=3 (=3 (=3
S (=] (=3 (=3 (=3 =3 (=3 =3 (=3 =3 =) (=3

Simulation Time step.

FIG. 1. Simulation observables in the approach to the steady
state. Curve A shows the evolution of the drop orientation an-
gle a (see Sec. VI), curve B the development of the ratio R of the
inertia tensor principal moments, and curve C the total lattice
work W,. These data are not relevant to the results of Figs. 8
and 9 below.
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however, in general all these observables appcar to equili-
brate asymptotically over approximately the same time
but all three (W, D, and a) appear to be fixed only in the
steady state, and it is possible that W, may be regarded
as a function of state for the macroscopic deformed drop,
sensitive to the shape of the latter.

Figure 2 shows the surface tension calculated from the
Laplace law (5.1) as a function of the independent simula-
tion parameter o. Over the range used in these simula-
tions there is a convincing linear relationship between the
two quantities. Optimum straight line behavior is ob-
tained with a gradient of 3.4689 and an ordinal intercept
of 0.0002.

Figure 3 shows a, the angle subtended by the drop
semimajor axis to the horizontal, as a function of ¥ and
Fig. 4 the variation of deformation D with y. In both
these figures ¥ was measured following the prescription
discussed in the previous section and the values of = from
the static calibration (Fig. 1) used to obtain the data
series parametrizations used in Figs. 3 and 4.

In attempting to assess the implications of the informa-
tion contained in Figs. 3 and 4 for the LBILG’s macro-
scopic hydrodynamics, it is useful to consider that our
applied shear flow field may be decomposed into a strain
and a rotation, the axis of elongation in the component
strain being oriented at 45° to the direction of flow
[13,14]. For the surface tension dominated case of small
deformation considered by Taylor [15], the drop will be
stretched along a line inclined at 45° to the flow direction,
into a spheroidal shape. Moreover, since the component
strain is proportional to the applied shear rate, for small
deformation one expects a linear relationship between D
and y. Clearly this behavior will complicate as larger
shear rates are applied and, affected by the flow’s com-
ponent rotation, a will vary—as the deformation in-
creases the drop poses more of an “obstruction” and its
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FIG. 2. Macroscopic surface tension X, obtained from
Laplace’s law, as a function of the simulation parameter . The
solid line shows the least-squares fit to the data, the solid
squares the actual data. The macroscopic surface tension = cor-
responding to the simulation parameter ¢ is used to parametrize
the results of Figs. 3 and 4. Similar results were obtained for
the data presented in Figs. 8 and 9 below.
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FIG. 3. The angular orientation of the drop, measured in de-
grees, shown as a function of applied blue fluid shear rate y.
The solid lines are lines of least-squares fit to three data series
each parametrized (upwards) by values of macroscopic surface
tension (2) 1.04X 1073, 2.08X 1073, and 0.33X107°. Each
data point corresponds to a simulation on an initially circular
drop of radius 7 lattice units on a lattice of 35X 35 sites, “equili-
brated” for 12 000 time steps. The drop with the smallest inter-
facial tension is that which is most rotated by the external flow.
In small shear fields all assumed ellipsoidal drops subtend an an-
gle of 45° to the flow direction.

semimajor axis will orientate closer to the horizontal. In
principle, a decreases with increasing y, but will tend to
45° in small applied shears. These trends are evident in
our results of Fig. 3. At very small shears, the drop
shape is affected by anisotropies introduced by the lattice,
so that the assessed angular orientation a becomes inac-
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FIG. 4. Deformation of the drop, parametrized by D (Secs.
V C and VI), as a function of blue fluid shear rate . The solid
lines are lines representing least-squares fits to four data series
(solid squares) each parametrized (downwards) by values of
macroscopic surface tension (Z)1.04X1073, 2.08X1073,
0.33X 1073, and 0.40X 1072 See Fig. 3 caption for simulation
details. The drop with the smallest interfacial tension is that
which is most deformed by the external flow. In small shear
fields all deformed drops tend to become circular.

I. HALLIDAY AND C. M. CARE 53

curate. However, extrapolation from larger shear rates
shows a tending to 45°, in agreement with the three-
dimensional analytical calculations of Taylor [15] and
Cox [12]. The predictions of [12] are valid only for small
deformation and unit applied shear rate. They are fully
adapted to three dimensions; however, it may be shown
that the linear relationship between deformation and y
and between a and y predicted in [12] does remain valid
in two dimensions. For practical purposes, the shear
rates used to parametrize the results (Figs. 3 and 4) are
perhaps unsatisfactory but a more quantitative compar-
ison with theory may be made by considering the rela-
tionship between the parameters a and D, which is the
content of Fig. 8, discussed below.

Figures 5 and 6 characterize the steady state micro-
currents induced in the interfacial region of a static drop.
Figure 5 depicts a scaled flow field in which velocities
have first been normalized to the maximum microcurrent
velocity V_,, and then represented by arrows of three
types (see the key to Fig. 5). As one might expect, the
principal microcurrent activity is consistent with the
symmetry of the lattice and (although obscured some-
what by the way in which the velocity field of Fig. 5 is
drawn—see key) restricted in range to cells the max-
imum velocity in each of which occurs in equivalent posi-
tions in equivalent simulations. ¥, may therefore be
regarded as a meaningful measure of microcurrent activi-
ty. In Fig. 6, this quantity was recorded for identical
drops over a range of the o parameter [Fig. 6(a)] and for
fixed o over a range of drop radii [Fig. 6(b)]. Gunstensen
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FIG. 5. Microcurrent activity for an unforced drop of fixed
radius 18 lattice units, with surface tension parameter 0.0015
(see Fig. 2). This result was obtained using the hexagonal
boundary conditions (discussed towards the end of Sec. IV). All
velocity vectors’ moduli v in this fully developed, steady state
have first been normalized to the maximum value V,,,,. Arrows
represent flow at lattice nodes with more than 0.0001% color
impurity. To emphasize the microcurrent pattern the circula-
tions are represented by dots for lattice sites where R =v /V .,
is such that 0.005V_,,>R, small vectors for
0.005V pnax <R <0.1V ., and by large vectors for 0.1V, <R.
The qualitative features of the induced flow pattern were ob-
served to vary little between simulations parametrized by
different values of o.
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has already detailed the variation of microcurrent magni-
tude in [5]. To the best of our knowledge, however, this
work has never been presented in the international litera-
ture. Figure 6(a) shows a linear correlation between o
and V,,,, which may be understood from a simple argu-
ment advanced in the next section. Figure 6(b) shows the
variation of V_,, with drop radius R for 0 =0.001. In
contrast to the case of Fig. 6(a), no clear trend emerges
from this, albeit limited, set of results and it seems possi-
ble that ¥V, is controlled in all but the smallest drops
solely by local, microscopic considerations. Again this
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FIG. 6. (a) The maximum induced microcurrent velocity for
a drop of radius 16 lattice units simulated using the hexagonal
boundary conditions discussed towards the end of Sec. IV,
recorded as a function of the simulation surface tension parame-
ter 2. The maximum velocities shown here were all recorded
within a very small region of the lattice, close to the interface.
Note the factor 4 attached to = on the horizontal axis. (b) Max-
imum microcurrent velocity shown as a function of drop radius
R, for fixed 0. Data were obtained using the hexagonal bound-
ary conditions discussed towards the end of Sec. IV. The solid
line shows the least-squares fit. The absolute location of the site
at which the maximum microcurrent velocity was found to
occur of course varies with R. The location of this site relative
to the interface position is—within the limits of our
investigation—fairly constant for the drop radii recorded here.
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observed persistence of the microcurrent at all drop radii
is in accordance with the simple argument advanced in
the next section.

All the lattice velocity fields produced in our simula-
tions were constant between consecutive time steps and
no staggered momentum modes, in which the velocity at a
given site oscillates persistently between different stable
values, were observed. Once the steady state is estab-
lished the velocity field in both static and sheared drops is
constant. During approach to the unsheared steady
state, distinct whole-lattice velocity field configurations
are observed near the drop. However, these modes decay
and visual observation suggests, as one would expect, that
restrictions of system geometry are responsible for the
suppression of staggered momentum modes. It should be
noted that red fluid pressure is observed initially to oscil-
late between one time step and the next, for a short
period. In contrast, the plane boundary between static
red and blue phases is unstable over long time scales. In
this case two separate whole-lattice velocity field states
arise and the simulation oscillates on alternate time steps
between the two, for all time. Here staggered momentum
modes dominate and no steady state arises.

Figures 7 and 8 represent a more quantitative compar-
ison with theory. Figure 7 plots drop deformation
against the parameter y /= for the data used to compile
Figs. 3 and 4. The linear correlation tends to imply that,
over a range of both shear rates and surface tensions, and
subject to the conditions set out below, D is governed by
an equation such as (6.1) adapted for k >>y (low defor-
mation), exhibiting correct functional dependence upon
v/2.

The data presented in Fig 8 correspond to simulations
of greater size (50X 50) which can facilitate accurate
measurement of small drop deformation and orientations
away from 45°. Here we plot Cox’s deformation D, [Eq.
(5.4) and [12]] against «, measured in radians, for the
sake of small angle approximations. The different flow
configurations observed were obtained by keeping the
surface tension fixed and increasing the applied, far field
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FIG. 7. Drop deformation as plotted against the parameter
v /2 for all the data presented in Figs. 3 and 4. Quantitatively
at least the expected trends are observed.
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FIG. 8. The angular orientation of the drop, measured this
time in radians, shown as a function of drop deformation mea-
sured by the parameter Do=(a —b)/(a +b)=<0.2 used in [12].
The range of D was determined so as not to exceed that of the
results considered in [12]. The solid line corresponds to a least-
squares fit to the data obtained from a drop of radius 10 units
sheared on a lattice of 50X 50. The ordinal intercept is 7 /4 rad
and the gradient —(0.847+0.157) rad. Theory predicts a gra-
dient of —0.434 rad and an ordinal intercept of 7/4 rad (bro-
ken line). The surface tension parameter ¢ in use was 0.001
which may be matched to a macroscopic (Laplace law) surface
tension using Fig. 2.

shear rate over a restricted range (y <0.0005 correspond-
ing to F;,. =0.001 and 0 =0.001). A restricted range of
v compared with that of Figs. 3 and 4 was necessary to
limit the drop deformation and ensure compatibility with
theory as discussed in Sec. V C. The macroscopic surface
tension simulation parameter for these simulations may
be inferred from Fig. 2.

A least-squares fit to this data (solid line, Fig. 8) gives
an ordinal intercept of 77 /4 rad and a gradient of —0.847
rad with an error from convergence considerations of less
than 18%. A careful check shows that the calculations
of Cox appear to be valid when reduced to two dimen-
sions. With some tedious but straightforward algebra,
therefore, the (three-dimensional) perturbation calcula-
tions of [12] may be adapted to predict steady state drop
deformation and orientations given (with our notation) by

5(19A+16)y

De= Arloy 6.1)
© 4+ DV 15K+ (1947 P
a:l_lt -1 I_K (6.2)
4 2 15k |’

where A is the ratio of drop to suspending fluid shear
viscosity. k =X /nV with V a characteristic velocity in the
region of the interface, relative to the center of the drop
[12]. Itis the presence of the parameter ¥ which restricts
the extent to which the work of [12] may be used as the
basis of quantitative comparisons. Note that the parame-
ter ¥ appears explicitly in Egs. (6.1) and (6.2) whereas it is
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FIG. 9. The variation of a reference velocity, recorded at a
distance of 1.6b along the projected semiminor axis (outside the
drop) for the enlarged simulation sizes used for the results of
Fig. 8. The forcing parameters in use produce velocities of a
size similar to the microcurrent velocity—see Fig. 6.

set to unity in [12]. A=1 for our system and when k >>y
(true for the situations of small deformation considered
here) Egs. (6.1) and (6.2) may be combined and one ob-
tains, by using a small angle approximation, a relation-
ship between D, and a,

_m_ 76
a="r—1=Dc (6.3)

in which a is measured in radians. This relationship is
represented by the dashed line in Fig. 8, so that theory
predicts that a plot of D, against a should have a gra-
dient of —0.434 rad and an ordinal intercept of 7/4 rad.
Considering static drops it was seen that lattice anisotro-
pies are responsible for the relatively inferior fit at low
deformation and deflection and it is this consideration
alone which restricted the minimum measured angular
deflection.

Figure 9 shows as a function of far field shear rate the
variation in the velocity recorded at a distance of 1.6b
along the projected semiminor axis (outside the drop) for
the enlarged simulation sizes used in the results of Fig. 8.
For the restricted range of shears employed (y =0.0005)
a typical flow velocity in the region of the interface is
seen to be comparable with a typical microcurrent veloci-
ty (Fig. 6).

VII. DISCUSSION

Kingdon’s nonlocal, nonlinear lattice Boltzmann algo-
rithm, used in conjunction with the techniques of Gun-
stensen et al., maintains a locatable and deformable in-
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terface. Moreover, the semiquantitative results in Figs. 3,
4, and 7 entail interfacial hydrodynamics with correct
semiquantitative behavior. However, the results of Fig. 8
are a more stringent test of the model’s interfacial hydro-
dynamics, from which a certain need for more detailed
comparisons with theory is seen to arise. Figure 8 shows
that drop deformation D is smaller than theory predicts
by some 50%, for a particular value of «, which
highlights a need for direct measurements of interfacial
boundary conditions. However, the ordinal intercept in
Fig. 8 and the functional relationship between D, and «
are in good agreement with theory.

Additional to the continuity of velocity components
through the interface, hydrodynamic boundary condi-
tions require tangential and normal contractions of stress
[7] to satisfy (in two dimensions)

s
nkoiid—nw?;i“e=;ni , 7.1)
ol —tofe=0, (7.2)

where of® and o%}* denote the red and blue fluid stress

(defined in [4]), R the local interfacial radius of curvature
and n;(t,) components of the local interface normal
(tangent), all of which may be measured from simula-
tions. In this way conditions (7.1) and (7.2) may be as-
sessed directly. Figure 6, which, after Gunstensen [5], ca-
talogues microcurrent activity in the region of the inter-
face in a static CA fluid raises obvious questions in
respect the extent that Egs. (7.1) and (7.2) will represent
the LBILG interfacial hydrodynamics. It is possible that
the microcurrent is responsible for the reduced deforma-
tion at given a recorded in Fig. 8 by insulating the drop
interior. Indeed, typical microcurrent velocities (Fig. 6
and [5]) are of a size with those induced by the external
flow, close the interface. Increasing shear rate can no
more illuminate the influence of the microcurrent (by
rendering it pro rata less significant) using our methods,
however, for the ensuing increased deformation lies out-
side the range of the theoretical predictions of [12].
However the results presented in Figs. 3, 4, and 7 (in
which D, not Cox’s D, features) when so arranged show
a constant linear relationship between a and D persisting
up to much higher shear rates, where microcurrent ac-
tivity may be expected to be less. But that flow stresses
are transmitted in a manner which is substantially correct
appears, from our results, likely.

Although the microcurrent might be reduced, for ex-
ample, by incorporating a factor in the right-hand side
(RHS) of (3.3) which decreases the surface tension pertur-
bation for sites with increasing color purity, a
microcurrent-free LBILG, whilst desirable, would be, on
the following simple argument, an unattainable solution
for any lattice gas relying upon a segregation rule as the
source of interfacial tension. Consider a lattice site adja-
cent to a mixed site in an established interface with a
large radius of curvature. Segregation of colored species
at the mixed site (after Gunstensen) necessarily generates
perturbed densities, which propagate onto the bulk site
considered, where links with a component along the local
color field direction will therefore contain larger-than-
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average incoming densities (from the interfacial site).
The constraint of momentum conservation in subsequent
collision processes will preserve this momentum anisotro-
py, which as a result will propagate further away from
the interface. The parameter o controls the extent of this
effect proportionately through the magnitude of density
perturbations manufactured in the interface [see (3.3)].
On this argument one expects principal microcurrent ve-
locities to be proportional to o —in agreement with ob-
servations. We should expect a microcurrent generated
in this way to have a limited extent for the concentration
of perturbed densities will decline away from the inter-
face, which appears to be the case in our results. In a lo-
cal average of momentum over a group of sites located
around (on both sides of) an interface the microcurrent,
from a few obvious tests, was observed to average to zero,
which restricts the extent to which microcurrents actual-
ly advect momentum.

Perturbation (3.3) has been used in this work for insert-
ing anisotropy into the pressure tensor (2.3) and hence for
the value of macroscopic surface tension. Gunstensen
et al. have remarked that (3.3) is phenomenological: as
such any perturbation with the same properties [3] is a
possible alternative. The density perturbation produced
by the RK rule in a CA may be measured or calculated
and regarded as the most authentic possibility. However,
a closed, analytical expression for the ensemble averaged
automaton interfacial density perturbation is unknown to
the authors and any measurement would still have to be
approximated for efficient application in a LBILG. Nev-
ertheless, the analytical form of the density perturbation
induced in Rothman-Keller automaton interfaces
remains an interesting question.

VIII. CONCLUSIONS

Combining Kingdon’s particular lattice Boltzmann
scheme with Gunstensen’s technique we have produced a
LBILG with an interface which is locatable for the pur-
pose of assessing the hydrodynamics of the interface.
Rothman and Keller previously showed that a static
suspended drop exhibits behavior consistent with
Laplace’s law and our LBILG also exhibits this behavior.

Our results for the steady state dynamics of two immis-
cible lattice Boltzmann fluids demonstrate that, with the
effective surface tension controlled by a parameter of the
model, a suspended drop deforms in a shear flow with the
expected functional dependence upon applied, far field
shear rate and surface tension. The deformed drop orien-
tation is also observed to have qualitatively correct
behavior. The quantitative relationship between the an-
gle a and the deformation D is unfortunately less en-
couraging, the measured gradient from Fig. 8 being
—(0.847x0.152) rad against a theoretical value of 0.434.
The predicted and measured ordinal intercepts are in
very close agreement, however.

Mesoscopic interfacial microcurrents apparently allow
the transmission of shear stresses over the range of simu-
lation parameters and, in this work, that range was deter-
mined from considerations of system size. Whilst charac-
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teristic microcurrent velocities encountered are not small
compared to those induced close to the interface by the
externally applied flow field, velocity and stress transmis-
sion across the interface are clearly observed and in part
“correct.” Yet it may be that at small induced shears
this no longer remains true, but this will prove difficult to
establish, without rather large simulations. Increasing
shear rate can no farther illuminate the influence of the
microcurrent using our methods, for the ensuing in-
creased deformation lies outside the theoretical predic-
tions employed. The best hope for further work lies in
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large shear rate direct measurement of stress contrac-
tions. However, the work to date suggests that the mi-
crocurrents do not, we believe, severely limit the applica-
bility of the method.

Questions remain to be addressed. Comparisons with
results correct for large shear rates and drop deformation
or direct measurement of the interfacial stress contrac-
tions in this regime perhaps offer the best way forward
towards a fuller appreciation of LBILG interfacial hydro-
dynamics. Then there are many potential applications of
the method to problems in multiphase fluid flow alone.
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